Home Projects Ax1 – Revolutionising Car Infotainment

The Challenge

Since the early 2010s, consumers have been familiar with touch screen handsets running iOS and Android, easy connectivity via Bluetooth or WiFi, and the concept of downloadable applications.

New sources of audio such as DAB and Spotify were becoming widely adopted – but the typical car audio system remained simple affair with an AM/FM tuner, a CD drive and push-button control. If it had any external connectivity at all, it would be an audio jack cable. Audio infotainment was a good decade behind other consumer products.

Clarion Malaysia, a supplier of infotainment systems to automotive OEMs and the retail aftermarket, had the idea of providing an in-car system that was as powerful and feature-rich as consumers had come to expect from their portable devices. They realised that the alternative was losing the infotainment market to consumer handset manufacturers, with the car providing nothing more than an amplifier and speakers on which to play audio from the user’s handset.

Clarion approached Plextek to work out what performance was possible for a system like this and to subsequently design and develop this radical new product which became the Clarion AX1.

The Approach​

An extensive study resulted in a specification for a touch screen device running the Android OS and supporting an extensive range of external connectivity. The choice of Android provides drivers the ability to update or customise their infotainment system with the latest content and apps just as they do with their smartphones or tablets.

However despite its popularity and vibrant apps marketplace, Android posed a number of challenges when applied to an in-car system, the biggest of which was power management. As Android is designed for battery-powered mobile devices it is not well equipped to deal with intermittent or disrupted power supplies, as happens for example when a car engine is started. Plextek was able to address this by designing the AX1’s processor board with a number of peripherals and intelligent power controls to prepare the Android system for the automotive power environment and by adapting Android’s power management to cope with the demands of automotive operation. Our design input also enabled the AX1 to overcome the challenge of interfacing broadcast receivers for AM/FM and DAB by customising Android, which at the time made no provision for broadcast receivers.

Finally, our product design and embedded software expertise was key to helping Clarion Malaysia overcome the design challenges involved in getting automotive grade reliability from the Android OS at a consumer-friendly price point.

The Outcome

The new system had a range of cutting-edge features including internet browsing, 3G support, Wi-Fi and Bluetooth audio-video streaming and an online music APP store all controlled through a user-friendly touchscreen interface that worked like a smartphone. The launch of AX1 generated a lot of excitement thanks to the boldness of the concept compared to the conservative designs that were typical of the category. It challenged car manufacturers to deliver what customers actually wanted in their lives, rather than the simple, safe concepts currently on the market.

Clarion Malaysia considers that the most important legacy of their technical leap forward with the AX1 has been cementing their reputation as an innovative market leader, and the new partnerships, relationships and business that this brought them.


Related Technical Papers

View All
an image of our technical paper
mmWave Imaging Radar

Camera systems are in widespread use as sensors that provide information about the surrounding environment. But this can struggle with image interpretation in complex scenarios. In contrast, mmWave radar technology offers a more straightforward view of the geometry and motion of objects, making it valuable for applications like autonomous vehicles, where radar aids in mapping surroundings and detecting obstacles. Radar’s ability to provide direct 3D location data and motion detection through Doppler effects is advantageous, though traditionally expensive and bulky. Advances in SiGe device integration are producing more compact and cost-effective radar solutions. Plextek aims to develop mm-wave radar prototypes that balance cost, size, weight, power, and real-time data processing for diverse applications, including autonomous vehicles, human-computer interfaces, transport systems, and building security.

an image of our technical paper
Low Cost Millimeter Wave Radio frequency Sensors

This paper presents a range of novel low-cost millimeter-wave radio-frequency sensors that have been developed using the latest advances in commercially available electronic chip-sets. The recent emergence of low-cost, single chip silicon germanium transceiver modules combined with license exempt usage bands is creating a new area in which sensors can be developed. Three example systems using this technology are discussed, including: gas spectroscopy at stand off distances, non-invasive dielectric material characterization and high performance micro radar.

an image of our technical paper
Ku-Band Metamaterial Flat-Panel Antenna for Satcom

This technical paper by Dr. Rabbani and his team presents research on metamaterial-based, high-gain, flat-panel antennas for Ku-band satellite communications. The study focuses on leveraging the unique electromagnetic properties of metamaterials to enhance the performance of flat-panel antenna designs, aiming for compact structures with high gain and efficiency. The research outlines the design methodology involving multi-layer metasurfaces and leaky-wave antennas to achieve a compact antenna system with a realised gain greater than +20 dBi and an operational bandwidth of 200 MHz. Simulations results confirm the antenna's high efficiency and performance within the specified Ku-band frequency range. Significant findings include the antenna's potential for application in low-cost satellite communication systems and its capabilities for THz spectrum operations through design modifications. The paper provides a detailed technical roadmap of the design process, supported by diagrams, simulation results, and references to prior work in the field. This paper contributes to the advancement of antenna technology and metamaterial applications in satellite communications, offering valuable insights for researchers and professionals in telecommunications.

an image of our technical paper
The Radiation Resistance of Folded Antennas

This technical paper highlights the ambiguity in the antenna technical literature regarding the radiation resistance of folded antennas, such as the half-wave folded dipole (or quarter-wave folded monopole), electrically small self-resonant folded antennas and multiple-tuned antennas. The feed-point impedance of a folded antenna is increased over that of a single-element antenna but does this increase equate to an increase in the antenna’s radiation resistance or does the radiation resistance remain effectively the same and the increase in feed-point impedance is due to transformer action? Through theoretical analysis and numerical simulations, this study shows that the radiation resistance of a folded antenna is effectively the same as its single-element counterpart. This technical paper serves as an important point of clarification in the field of folded antennas. It also showcases Plextek's expertise in antenna theory and technologies. Practitioners in the antenna design field will find valuable information in this paper, contributing to a deeper understanding of folded antennas.

an image of our technical paper
60 GHz F-Scan SIW Meanderline Antenna for Radar Applications

This paper describes the design and characterization of a frequency-scanning meanderline antenna for operation at 60 GHz. The design incorporates SIW techniques and slot radiating elements. The amplitude profile across the antenna aperture has been weighted to reduce sidelobe levels, which makes the design attractive for radar applications. Measured performance agrees with simulations, and the achieved beam profile and sidelobe levels are better than previously documented frequency-scanning designs at V and W bands.

an image of our technical paper
Ku-Band Low-Sidelobe Waveguide Array

The design of a 16-element waveguide array employing radiating T-junctions that operates in the Ku band is described. Amplitude weighting results in low elevation sidelobe levels, while impedance matching provides a satisfactory VSWR, that are both achieved over a wide bandwidth (15.7-17.2 GHz). Simulation and measurement results, that agree very well, are presented. The design forms part of a 16 x 40 element waveguide array that achieves high gain and narrow beamwidths for use in an electronic-scanning radar system.

an image of our technical paper
Non-Invasive Auditory Sensing with Affordable Headphones

This paper presents a sensor for measuring auditory brainstem responses to help diagnose hearing problems away from specialist clinical settings using non-invasive electrodes and commercially available headphones. The challenge of reliably measuring low level electronic signals in the presence of significant noise is addressed via a precision analog processing circuit which includes a novel impedance measurement approach to verify good electrode contact. Results are presented showing that the new sensor was able to reliably sense auditory brainstem responses using noninvasive electrodes, even at lower stimuli levels.

an image of our technical paper
Long Range Retro-Reflector

Passive retro-reflectors that modulate a scattered RF signal but do not transmit in their own right are well known. They are widely used in RFID tags, and keyless entry systems with a number of standardised solutions defined within the industry. The main advantage of these systems is that the mobile unit (the tag) can either avoid completely the use of a battery by powering itself from the incident RF ‘interrogating’ signal or only require a very small battery with a long life. This enables a ‘disposable’ tag to be engineered at very low cost, size and weight. However, there are many potential applications that require a somewhat longer transmission range than can sensibly be achieved with this method. The conventional paradigm requires a higher power ‘interrogating’ signal in order to increase range and there are obvious limits to how far this can be taken. The combination of regulatory restrictions and the steep range vs power slope that results from the fundamental mode of operation generally restrict the range to a few metres at most. Plextek have been taking a fresh look at the possible ways of circumventing this obstacle to produce a long range device that is nevertheless RF passive (does not transmit but only scatters). This paper describes in outline some ideas in this space, some initial experiments that have been done and some potential applications of the techniques.

an image of our technical paper
An Optical Room Occupancy Sensor

An automated sensor system that determines whether rooms within a building are occupied by a person or people has many applications. These divide broadly into the following classes: Security: Whole-site surveillance from control node, cases where a room should not be occupied, intruder detection and asset tracking. Safety: Identification of lone workers during non-core hours and remote supervision of isolated working environments. Confirmation of building evacuation. Management of high risk processes. Facilities Management: Environmental controls (lighting/heating) to meeting room booking aid. Sensors that seem to solve this problem are plentiful and it is only when they are considered in detail that their deficiencies become apparent. This short paper makes this case and introduces a new type of sensor based on an optical method.

an image of our technical paper
An Introduction to Yocto

Yocto is a comprehensive project designed to address the complexity of building custom Linux distributions for embedded systems. Unlike conventional Linux distributions (distros) created for standard PC architectures, Yocto caters to the diverse and often incompatible hardware in the embedded world. By providing a sophisticated build system based on layered scripts called "recipes," Yocto streamlines the process of creating, maintaining, and updating embedded distros. Each package within a distro has its own recipe, maintained by the package developers, ensuring that updates and customizations are manageable and consistent. This structure allows developers to define precise sets of packages for their embedded systems, facilitates updates through package managers, and supports a wide range of hardware platforms. With support from major chip and board manufacturers, Yocto is becoming the go-to toolset for embedded Linux development, offering unparalleled flexibility and control for developers aiming to create finely tuned, market-ready products.

Contact Plextek

Got a project in mind?

Let’s talk

If you have got a project to discuss, or even just an idea, let's talk